星期二, 8月 23, 2022 Categorized under MBA

八年级数学教案(精选12篇)

难点:本节课内容较容易接受,不存在难点.**课堂引入:**下表显示的是上海20八年级数学教案年2月下旬和20八年级数学教案年同期的每日最高气温,如何对这两段时间的气温进行比较呢?从表中你能得到哪些信息?比较两段时间气温的高低,求平均气温是一种常用的方法.经计算可以看出,对于2月下旬的这段时间而言,20八年级数学教案年和20八年级数学教案年上海地区的平均气温相等,都是12度.这是不是说,两个时段的气温情况没有什么差异呢?根据两段时间的气温情况可绘成的折线图.观察一下,它们有区别吗?说说你观察得到的结果.用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的差称为极差(range).**例习题分析**本节课在教材中没有相应的例题,教材P152习题分析问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。

线合一性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。

)小试身手1、.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7经过计算,两人射击环数的平均数是,但S=,S=,则SS,所以确定去参加比赛。

】2.画一画。

例子一定要和大家接触紧密、典型。

×10?4,以此发现其中的规律,从而有。

∠BAD=∠CAD→AD为顶角∠BAC的平分线。

上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0,x4=-3正解:方程的整数根是x1=-1,x2=-2,x3=0,x4=-3【练习】练习1、(01济南中考题)已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根x1、x。

能力目标:灵活运用中心对称的性质,会作关于已知点对称的中心对称图形。

⑵.表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。

∴△AˊBˊCˊ与△ABC关于点O成中心对称也会作。

**第四环节:登高望远**内容:1.一个零件的形状如图2所示,按规定这个零件中都应是直角。

关注学困生和女生。

公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。

由此我们看到+3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:()2=—4学生思考后,得到结论此题无答案。

难点:求解最短路径算法的程序实现。

问题1三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?问题2你能用几何推理来论证得到的关系吗?对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――辅助线。

**教学过程设计**本节课设计了七个环节。

找对应元素的常用方法有三种:(一)从运动角度看1.平移法:沿某一方向推移使两三角形重合来找对应元素.2.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.3.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.(二)根据位置元素来推理1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.(三)根据经验来判断1\\.大边对应大边,大角对应大角2\\.公共边是对应边,公共角是对应角课堂作业必做题:课本第38页1、2、选做题:第3题板书设计12.1全等三角形概念全等三角形的性质性质应用例题小结:找对应元素的方法运动法:翻折、旋转、平移.位置法:对应角→对应边,对应边→对应角.经验:大边→大边,大角→大角.公共边是对应边,公共角是对应角。

说一说,想一想。

我很兴奋。

这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。

八年级数学教案篇9**分式方程****教学目标**1.经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。

教学难点:求加权平均数、中位数和方差;根据平均数、加权平均数、中位数、众数、极差和方差对数据作出比较准确的描述。

因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。

**教学反思:**1.充分尊重教材,以勾股定理的逆向思维模式引入如果一个三角形的三边长,满足,是否能得到这个三角形是直角三角形的问题;充分引用教材中出现的例题和练习。

师生互动,课堂小结这节课主要探讨了等腰三角形的性质,并对性质作了简单的应用。

-9,3),(-9,0),(-3,0),(-3,3)(学生操作完毕后)2.(出示投影)还是在这个平面直角坐标系中,描出下列各组内的点用线段依次连接起来。

**教学设计****情境引入**教科书第161页问题:木星的质量约为。

**教学重点**1.轴对称的性质。

在教学活动中,通过学生的自主学习来体现他们的主体地位,而教师是通过对学生参与学习的启发、调整、激励来体现自己的主导作用。

大家很快就通过数格子发现了勾股定理的规律。

八年级数学教案篇5单元(章)主题第三章直棱柱任课教师与班级本课(节)课题3.1认识直棱柱第1课时/共课时教学目标(含重点、难点)及**设置依据教学目标**1、了解多面体、直棱柱的有关概念.2、会认直棱柱的侧棱、侧面、底面.3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.教学重点与难点教学重点:直棱柱的有关概念.教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力.教学准备每个学生准备一个几何体,(分好学习小组)教师准备各种直棱柱和长方体、立方体模型**教学过程**内容与环节预设、简明设计意图二度备课(即时反思与纠正)**创设情景,引入新课**师:在现实生活中,像笔筒、西瓜、草莓、礼品盒等都呈现出了立体图形的形状,在你身边,还有没有这样类似的立体图形呢?析:学生很容易回答出更多的答案。

利用多媒体进行教学随着信息技术的发展,多媒体技术普及到了社会的方方面面,在课堂教学中也已经应用得十分普遍。

点B绕点O旋转180°与点D重合。

题目的解决这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。

设问质疑,探究尝试(1)求证:三角形三个内角的和等于让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。

当时,分母。

八年级数学教案篇4514.3.2.2等边三角形(二)教学目标掌握等边三角形的性质和判定方法.培养分析问题、解决问题的能力.教学重点等边三角形的性质和判定方法.教学难点等边三角形性质的应用教学过程I创设情境,提出问题回顾上节课讲过的等边三角形的有关知识1.等边三角形是轴对称图形,它有三条对称轴.2.等边三角形每一个角相等,都等于60°3.三个角都相等的三角形是等边三角形.4.有一个角是60°的等腰三角形是等边三角形.其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.II例题与练习1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?在边AB、AC上分别截取AD=AE.作∠ADE=60°,D、E分别在边AB、AC上.过边AB上D点作DE∥BC,交边AC于E点.2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.III课堂小结1、等腰三角形和性质2、等腰三角形的条件V布置作业1.教科书第147页练习1、22.选做题:(1)教科书第150页习题14.3第ll题.(2)已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?(3)《课堂感悟与探究》5八年级数学教案篇5**教学目标:**1\\.掌握三角形内角和定理及其推论;2\\.弄清三角形按角的分类,会按角的大小对三角形进行分类;3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

师:指出对称轴。

由练习我们看到+3与—3的平方是9,9的平方根是+3和—3,可见平方运算与开平方运算互为逆运算。

写出每月用水量不超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。

如何把教案做到重点突出呢?下面是小编帮大家整理的八年级数学教案优秀5篇,仅供参考,希望能够帮助到大家。

意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。

此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的存在,所以这里的例子只需要概述,能够说明问题即可。

生交流热情很高,但把全部问题分析完已用了30分钟。

将学讲练和谐的课堂教学模式渗透于教学。

角形三个内角关系的定理及推论引导学生分析并严格书写解题过程八年级数学教案篇9知识目标:理解函数的概念,能准确识别出函数关系中的自变量和函数能力目标:会用变化的量描述事物情感目标:回用运动的观点观察事物,分析事物重点:函数的概念难点:函数的概念教学媒体:多媒体电脑,计算器教学说明:注意区分函数与非函数的关系,学会确定自变量的取值范围教学设计:引入:信息1:小明在14岁生日时,看到他爸爸为他记录的以前各年周岁时体重数值表,你能看出小明各周岁时体重是如何变化的吗?新课:问题:(1)如图是某日的气温变化图。

教学重点:全等三角形的性质。

**教学过程:**知识回顾与思考1、平均数、中位数、众数的概念及举例。

教学措施:1、认真学习教育教学理论,结合落实课标理念。

\x7f同样的方法可以算出(2)、(3)题。

×1024吨,地球的质量约为。

在教学活动中,通过学生的自主学习来体现他们的主体地位,而教师是通过对学生参与学习的启发、调整、激励来体现自己的主导作用。

负数没有平方根。

根据题意,可得方程______________________。

**教法建议**平行线等分线段定理的引入生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑:从生活实例引入,如刻度尺、作业本、栅栏、等等;可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论。

-9,3),(-9,0),(-3,0),(-3,3)(学生操作完毕后)2.(出示投影)还是在这个平面直角坐标系中,描出下列各组内的点用线段依次连接起来。

**作业**教材P。

事实上,当1-2k=0即k=时,原方程变为一次方程,不可能有两个实根。

具体说明如下:(1)由先教后学转向先学后教本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。

本节课的教学内容和现实生活密切相关,是培养学生应用数学意识和创新能力的最好素材。

错解:∵方程有整数根,∴△=9-4a>0,则a<2.25又∵a是非负数,∴a=1或a=2令a=1,则x=-3±,舍去;令a=2,则x1=-1、x2=-2∴方程的整数根是x1=-1,x2=-2错因剖析:概念模糊。

Leave a Reply